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ON CERTAIN METHODS OF SOLVING SYSTEMS OF INTEGRODIFFERENTIAL EQUATIONS
ENCOUNTERED IN VISCOELASTICITY PROBLEMS”

F. BADALOV, KH. ESHMATOV and M. YUSUPOV

The method of freezing proposed and given a foundation by A.N. Filatov,
for systems of integrodifferential equations (IDE) of standard form /l-4/
is applied to IDE systems encountered in dynamic viscoelasticity problems.
A numerical method is propcsed for IDE systems, which is based on using
quadrature formulas. A specific example is examined to compare this
method with other known methods (the method of averaging and the method

of freezing). Furthermore, a problem on the longitudinal vibrations of

a viscoelastic rod in a physically non-linear formulation is investigated
by the method of freezing in combination with a numerical Runge-Kutta
method.

1. Let us consider an IDE system of the form

t
T ofT =0 +eX (6 T T S n T, T () 0 1
0

IO =Ty T (O=T;

Here T;() is the desired function of the argument ¢ u>0 is a small parameter, f; X;
and ¢: are given continuous functions in the range of variation of the arguments, and the
subscript i takes on the values 1,2, ... r everywhere.

By making the substitution

i
1
T, (= Cli cos @yt 4 C,i sin ot -+ . S fi(v)sino, (t —1)dv (1.2)
13 :0

we can reduce system(l.l) to standard form. Applying the freezing procedure /1-4/ to the
system obtained and taking account of relationship (1.2}, we obtain after differentiation

0+ ofr =ty @+ X {0 a1 (o (60—, Ty cosone — (.3)
t

1w A -
ITI (t)smm;t—w—lls fi(s)siney (t—Tv—8)ds,. .., Tn(t)cosmnt—.
-1

'
1 1
Kﬂ-Tﬂ- (;):inmnr—T‘S fal®) sinmn(t—‘r—;)ds)dr}
-
T (0)=T. T, O=7
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Therefore, a system of differential equations with variable coefficients of the form (1.3)
is set in correspondence with system (l1.1) by the method of freezing. It is obviously simpler
to investigate system (1.3) than the IDE system of the form (1.1). Moreover, well-known
numerical integration methods can be applied to system (1.3).

The form of system (1.3) enables one to perform the freezing action without reducing the
initial IDE system to standard form.

2. We now apply a numerical method based on utilization of quadrature formulas for system
(1.1). We will write this system in integral form. Then setting t=ty, t;=jk j=1,...,mm=

1,2,...(h = const) , and replacing the integrals by certain quadrature formulas, we obtain the
following approximate formula to calculate the values of T, = T; (tm) "

Mm=—1

. 1 .
T, =Tycos0/ + w—‘ T, sinwt, + a)—‘ Z Ajf.' (tj) sin o, (£, — tj) + 2.1)
j=0
m—1 j ’
P

S a3 it T T
=0 k=0

:smwi(tm-—tl), m=1,2,...

where 43, 8; and Cpi=0,1,...,mk=0,1,...,/;m=1,2,,, are numerical coefficients independent

of the integrand selections and taking on different values depending on the quadrature formulas
utilized.

The form of the integrands enables one to find numerical values of the desired functions
sequentially from (2.1) by using the given initial conditions. The error in the method proposed

agrees with the error obtained when using quadrature formulas and is of the same order of
smallness relative to the interpolation step.

3. To compare the method of freezing with certain other methods, we consider the Cauchy

problem :

el =+ {RE—DT (e @3.1)
0
TO=Ts T (O)=T0

We will show that many viscoelasticity problems reduce to equations of the form (3.1).
As is well-known /5/, the dynamical problems of linear viscoelasticity theory reduce, after
application of Bubnov-Galerkin type methods in the space variables (finite elements), to IDE
systems of the form
t
Mu"+Gu=F(t)+GSR(t—t)u(T)dt (3.2)
1]

(M is the matrix of the system mass, G is the stiffness matrix, and R () is the relaxation
kernel). If the matrix of the nodal displacements u () i8 represented in the form of linear
combinations of the eigenvectors of the corresponding elastic problems, i.e., /6/

u(®) =T () Wi+ T () W, +
0 (i) 0 (is=))
T _ T -
wiww,={ 1 T, wiow={as T}
then by omitting the subscripts we obtain (3.1) from (3.2).
According to (1.3), the appropriate differential equation for (3.1) canbe written in the

form
"4 ol, )T+ (1T ()] T =f()—
1 t

(.)SR(-:)th S F(s)Bine (t — % —s)ds
0 t—1
T =Ty, T (0)=T¢
t 3
(I‘a(t)=SR(s)sinmads, I‘c(t)=SR(a)cosmudc)
0 0

The differential equation with constant coefficients
T gl (00} T" + 0 [1 —T (00)] T = f(t) + o (D, sin wt + D, cos wi) —
i

—(;-Sf(t)[sinm(t—-'t)—cosm(t—r)]d‘r
o
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T (0) = T, T (0)="Ty
Ds 5 1 th sin} cd
D zp.l.u:, P (){cos o
c o
t—t

D(t)=SR(1:)d1: S Sinw(t— T—s)ds
0 [}

is set in correspondence with (3.1) by the method of averaging /1-4/.
We now apply the method proposed in Sect.2 for (3.1). We write the equation in integral
form and (2.1) becomes

1
Tm=Tocoswtm+TTo'sinmtm—|—
| m—1
‘TZAjl(tj)sinm(tm—tj)—l—mZBjF(tm,tj)Tj, m=1,2,...
i=0 i=0
t—-t
F(t, ©) = SR(s)sinm(t—-t—s)ds, F(t, =0
[}

where A4; B;(i=0,1,...,m —1) are coefficients of the Simpson quadrature formula.
Let us consider (3.1) for such data

f()=1asin®, R( —1)=aexp[—2B(t — )
@ = 2B =0,05sec™l, s = 250 kg/cm? 8 =20
w? = 350 sec~2, T, = 0,05 cmu Ty =0

The following

T (1) = exp (—Bt) [(T, — Pg) cos At + (BA-1T, + &) sin M} +
rsiu 02 -+ Bg cos 0, g = Yyad ! (g, — q_)
e =10k (e, — &), r = Yyah ! (e, + )

0= (k0 0y, gy = [+ 0 + B, b= YT — 2

is the exact solution of (3.1) for the f(), R() and initial data taken.

Below we give the exact solution (7) of (3.1) and the approximate solutions obtained by
the method of averaging (7, the method of freezing (7;) and the method based on using the
quadrature formulas proposed in Sect.2 (7

t o 2 4 6 8

T-10¢ 500 380 44,8 —531 —1344
Tq-10% 500 424 181,6 —273 —961
Tp-10¢ 500 377 38,9 —539 —1353
T.-10¢ 500 380 43,3 —533 —1345

It is seen that for the problem under consideration the method of freezing and the method
based on using the quadrature formulas yield more accurate results as compared with the
method of averaging.

4. we consider the problem of longitudinal vibrations of a viscoelastic rod. We take
the relationship between the stress o and the strain e in the form

°=E{'«*Y~‘3"’—§R(f—1) [8(1)—\’8’(1)]‘"}
[}

where R (1) is the relaxation kernel, y is a non-linearity factor dependent on the rod material,
and E is the elastic modulus. Substituting this expression into the vibrations equation,
introducing the dimensionless parameters (u(r,t!) is the displacement, and p is the density

of the rod material) ull, 3/, t EBIEY™", R (t)- (o1t E)s

and retaining here all the previous notation, we obtain (the prime denotes the derivative
with respect to z) :

w=w—(RE—ur @ ndr— sy (4.1)

[]
t

3y S R(t—1) (@ (2, H)u" (2, T) dr
(/]
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We supplement (4.1) by the initial conditions
u{z, 0) = fo (2}, u' {z, 0) = g (2)
Assuming one end of the rod to be clamped and the other to be free, we seek the solution
of (4.1) that will satisfy the boundary conditions of the problem, in the form
2N-—1

u(z, t) = E T, (t)sin
k=1,8,..,

knz
5 4.2)

Substituting (4.2) into (4.1) and applying the Bubnov-Galerkin procedure, we have the

following IDE system for finding the desired functions Tx () (k=1,3,...,2¥ — 1)
12
Ty A+ @l =mLFSR(t—~1:) T () v+ v (T, Ty, - ooy Ty g) — (4.3)
0
t
P RE—D @ (11 (), Ta (1), o, Ty, (1) d
3
3t 2N~—~1 N
©p == Ysktt, @ (T, Ts, o ony Tyy ) :—S_S }: Z mT . (i) eos m;w ] x
SN—1 0 Mee), §, ...

. mnz .k
m”Tm(t)sm 5 ]sm-—z—z dx

mal, By ..n

The following data are used for the numerical computations:

Rig—v=aexpi—2B(t—~7)], a=28=20,05
fo {2) =83 (z — 1p2h), g (&) = 0

According to (1.3), a system of differential
equations for whose solution the Runge-Kutta method is
A used, is set in correspondence to system (4.3) by the
\‘ method of freezing.

1 FPive of the first harmonics are kept in (4.2}

i / {calculations showed that a further increase in the

i [ ] number of terms exerts substantially no influence on

\ the amplitude of rod vibrations). The vibrations mocde
of the middle point of the rod is represented in the
figure for the values y=0 (the solid line) and

= 0,05 (the dashes).

~

\u(l/z,t )
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