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ON CERTAIN METHODS OF SOLVING SYSTEMS OF INTEGRQDIFFERENTIAL EQUATIONS 
ENCOUNTERED IN VISCOELASTICITY PROBLEMS* 

F. BADALOV, WI. ESHMATOV and M. YUSUPOV 

The method of freezing proposed and given a foundation by A.N. Filatov, 
for systems of integrodifferential equations (IDE) of standard form /l-4/ 
is applied to IDE systems encountered in dynamic viscoelasticity problems. 
A numerical method is proposed for IDE systems, which is based on using 
quadrature formulas. A specific example is examined to compare this 
method with other known methods (the method of averaging and the method 
of freezing). Furthermore, a problem on the longitudinal vibrations of 
a viscoelastic rod in a physically non-linear formulation is investigated 
by the method of freezing in combination with a numerical Runge-Kutta 
method. 

1, Let us consider an IDE system of the form 

'i" + oi2Ti = f* (t) + ~'i (t. '1, . ' .) Tn( 5 'pi (t, t, T1(T), . . .I T*(r)) k 
1 

0 

Ti (O) = TO+, T*'(O) = Toi' 

Here Ti (t) is the desired function of the argument t, p>O is a small parameter, 
and qi are given continuous functions in the range of variation of the arguments, and 
subscript i takes on the values 1,2,...,n everywhere. 

By making the substitution 

t 

T,(t) = C,icusw,t + C,* sinwit + & 
s 
fi(r) sinoi(t -T)& 

I * .O 

we can reduce system(l.1) to standard form. Applying the freezing procedure /l-4/ to the 
system obtained and taking account of relationship (1.21, we obtain after differentiation 

(1.1) 

ii, xi 
the 

(I.21 

t 
Tj” -!r wjPTi = f, VI -i-W+ 1 1, TI, . . ., Tn, r ( q+ f, f - T, T,(t) co3 WIT - 

i 
(1.3) 

T, (0) = T,j, T,’ (0) = Toj’ 
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Therefore, a system of differential equations with variable coefficients of the form (1.3) 
is set in correspondence with system (1.1) by the method of freezing. It is obviously simpler 
to investigate system (1.3) than the IDE system of the form (1.1). Moreover, well-known 
numerical integration methods can be applied to system (1.3). 

The form of system (1.3) enables one to perform the freezing action without reducing the 
initial IDE system to standard form. 

2. Wenowapplyanumericalmethodbased on utilization of quadrature formulas for system 
(1.1). We will write this system in integral form. Then setting t = t,, tj = jh, j = 1, . . ., m; m = 

1, 2, ..(h=const), and replacing the integrals by certain quadrature formulas, we obtain the 
following approximate formula to calculate the values of T,i= Ti(t,): 

Tlni = Toi cm coil,,, + -& T,,; sin 
1 

A,fi (5) sin oi (4 - tj) + 

m--l 

6 z B/X$ ($. Tilv . . ., Tjnc 2 Chvi Vj, ths T,,, . . ., T,,,) x 
h=0 

!SlLl co* (4, -t,,, m=l,Z,... 

where -41, Bj and chv i = 0, 1, . . ., m; k = 0, 1, . . ., i; m = 1, 2, , . . are numerical coefficients 

(2.1) 

independent 
of the integrand selections and taking on different values depending on the quadrature formulas 
utilized. 

The form of the integrands enables one to find numerical values of the desired functions 
sequentially from (2.1) by using the given initial conditions. The error in the method proposed 
agrees with the error obtained-when using quadrature formulas and-is of the same or&er~o~-~~ 
smallness relative to the interpolation step. 

3. To compare the method of freezing with certain other methods, we consider the Cauchy 
problem 

T”+dT=f(t)+w’ R(f-~)T(r)ds 
s (3.1) 

T (0) = To, T’ (0) =oT; 

We will show that many viecoelasticity problems reduce to equations of the form (3.1). 
As is well-known /5/, the dynamical problems of linear viscoelasticity theory reduce, after 
application of Bubnov-Galerkin type methods in the space variables (finite elements), to IDE 
systems of the form 

Mu" + Gu = F(t)+ G s R(t-~)u(z)& (3.2) 
0 

(m is the matrix of the system mass, G is the stiffness matrix, and R(t) is the relaxation 
kernel). If the matrix of the nodal displacements u(t) is represented in the form of linear 
combinations of the eigenvectors of the corresponding elastic problems, i.e., /6/ 

u (4 = T1 (4 B, + T, (0 W, + . . . 

then by omitting the subscripts we obtain (3.1) from (3.2). 
Accoraing to (1.31, the-appropriate- d~fferentielequatiorifor (3.1) canbe written in the 

form 
T” + or, (t) T’ + a* [ 1 - rc (t)] T = f (t) - 

0 i 5 R (qdr f (s)sin o(t - r - s)da 
0 t--r 

T (0) = To, T (0) = To,’ 

(r8(t)=~R(s)sinw.ds, rc(t)=~R(s)uaw&) 

0 0 

The differential equation with constant coefficients 

T-+I/dd(m)T’+02[1 -rc(OO))T= f(t)+o(D, sinot+DEcOSti)- 
t 

G- s f (T) [sin co (t - T) - cos o (t - r)] dr 
cl 
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D (I) = 5 R (r) dt * j’sin o (t - T - s) ds 

0 0 

is set in correspondence with (3.1) by the method of averaging /l-4/. 
We now apply the method proposed in Sect.2 for (3.1). We write the equation in integral 

form and (2.1) becomes 

T,,, = TO cos tot,,, + & To. sin of, + 

m-1 m--l 

.- kz A,f (tj) sin 0 (tm - t,) + co .E BjF ct,, tj) T,’ m = i, 2, . . . 
j=o j=o 

t-r 
F (t, r) = S R (s) sin o (t - t-s) ds, F (t, t) = 0 

0 

where Al, RI (i = 0, 1, . . ., m-f) are coefficients of the Simpson quadrature formula. 
Let us consider (3.1) for such data 

The following 

f @) = a sin et, R (t - t) = 01 exp [-2g (t - r)] 

CL= 28 = 0,05sec_l,a = 240 kg/cm2,16 = 90 
W* = 350 set -2 , To = 0,05 cm,,T,' = 0 

T (4 = exp (-IQ) I(To - fiq) cos ht + @h-‘To + e) sill ht] + 
r sill et + fiq cos Bt, q = V,d- (q+ - q_) 

e = ‘l,ah-’ (e+ - e_), r = ‘/,a~-’ (e, + e_) 
c* = (A It 0) q*, q* = I(h f e)* + fPl-‘, a. = 1/d - fJ’ 

is the exact solution of (3.1) for the f(t),R(t) and initial data taken. 
Below we give the exact solution (2') of (3.1) and the approximate solutions obtained by 

the method of averaging (T,), the method of freezing (Tb) and the method based on using the 
quadrature formulas proposed in Sect.2 (T,) 

It is seen that for the 

t 02 4 6 8 
T.10’ 500 880 44,8 -531 --1344 
T,.lO' 500 4.24 181,6 -273 -961 
Tb.lO” 500 377 33.9 -539 --1353 
T,.lO” 500 330 43,3 -533 -1345 

problem under consideration the method of freezing and the method 
based on using the quadrature formulas yield more accurate results as compared with the 
method of averaging. 

4. We consider the problem of longitudinal vibrations of a viscoelastic rod. We take 
the relationship between the stress o and the strain e in the form 

o=E{e-yes-jR(t--r) [e(T)-yyeS(r)]dr} 
0 

where R(t)is the relaxation kernel, y is a non-linearity factor dependent on the rod material, 
and E is the elastic modulus. Substituting this expression into the vibrations equation, 
introducing the dimensionless parameters (u(x,t) is the displacement, and p is the density 
of the rod material) u/l, z/l, L (pP/E)-I", R (t). (pZ'/E)"~ 

and retaining here all the previous notation, we obtain (the prime denotes the derivative 
with respect to I) 

U" = U' - 
s 

R (I - r) u” (I, T) dr - 3? (,q y” + (4.1) 
0 

t 

31’ i R (t - 7) (u’ (z. T))* u” (z, T) dr 
0 
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We supplement (4.1) by the initial conditions 
u (& 0) = f* (z). U' (5, 0) = g, (z) 

Assuming one end of the rod to be clamped and the other to be free, we seek the solution 
of (4.1) that will satisfy the boundary conditions of the problem, in the form 

u (z, f) = -2’ T, (t) sin + 
R=1.3,.., 

(4.2) 

Substituting (4.2) into (4.1) and applying the Bubnov-Galerkin procedure, we have the 
following IDE system for finding the desired functions Tr(t) (k= 1,3,...,2N--1) 

f 
Tk 

. . 
-I- wk2T, = m,:* 1~7 u - ~1 T, (7) dr + VQ (~1, T,, . . ., T~~_.J - (4.3) 

0 t 
Y 1 R 0 - 7) ‘pi, VI h), Ta (+), . . ., TzN+ (T)) dz 

D 

The following data are used for the numerical computations: 

R (t - z) = a exp I-ZB ft - tfi, a =S Zt3 = 005 
f# (s) = 8/3 (z - '/*z"), g, (z) = 0 

1. 

2. 

3. 

4. 

5. 

6. 

According to (1.3), a system of differential 
equations for whose solution the Runge-Kutta method is 
used, is set in correspondence to system (4.3) by the 
method of freezing. 

Five of the first harmonics are kept in (4.2) 
(calculations showed that a further increase in the 
number of terms exerts substantially no influence on 
the amplitude of rod vibrations). The vibrations mode 
of the middle point of the rodis represented in the 
figure for the values y= 0 (the solid line) and 
y = 0,05 (the dashes). 
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